Programme: M. Sc. Part-I (Chemistry)

Course Code: ACC-401 Number of Credits: 03

Title of the Course: Concepts in Analytical Spectroscopy Effective from AY: 2018-19

D		
Prerequisites	Students should have studied the spectroscopic techniques such as $UV-VIS$,	
for the	IR at FY B Sc, S Y B Sc or I Y B Sc levels so as to have basic knowledge	
course:	of spectroscopy and basic principles.	
Course	1. Introduction of various concepts in molecular and atomic spectroscopy.	
Objectives:	2. Learning data analysis, handling and interpretation of spectra	
Course	1. Students should be in a position to use spectroscopic methods for	
Outcomes:	qualitative and quantitative analysis.	
	2. Evaluate the utility of UV/V is spectroscopy as a qualitative and	
	quantitative method.	
	4. Students should be in a position to predict the structure based on IP	
	4. Students should be in a position to predict the structure based on iK, NMP MS data	
Contonto	NVIK, MS data.	10 hr
Content:	1.Introduction to spectrochemical methods	12 11
	1.1. Interaction of Electromagnetic Radiation with Matter: electromagnetic	
	spectra, Regions of Spectrum; Numericals.	
	1.2 Electronic spectra and Molecular structure: kinds of transition,	
	Chromophores and auxochrome, absorption by isolated chromophores,	
	1.3 Infrared absorption and molecular structures: IP spectra, overtones and	
	hands basis of NIP absorption	
	1.4 Spectral Databases: Identification of unknown: Application of UV-Vis	
	and IR spectroscopy for identification of unknown compounds	
	1.5 Solvents for spectrometry: Choices and effect of solvents on UV-Vis	
	and IR spectra	
	1.6. Quantitative Calculations: The Lambert-Beer's Law: Mixtures of	
	absorbing species-laws of additivity of absorbance: calibration curve for	
	calculation of unknown; Spectrometric errors in measurement; Deviation	
	from Lambert-Beer's law-chemical deviation, instrumental deviation;	
	Quantitative measurement from IR spectra; Numericals for quantitative	
	analysis using UV-VIS spectroscopy.	
	1.7. Spectrometric Instrumentation of UV-Vis and IR (brief introduction	
	only): Sources, monochromators, sample cells, Types of instruments;	
	detectors; Instrumental wavelength and absorption calibration.	
	(Chapter 16: Analytical Chemistry, G.D. Christian, 6 ⁿ Ed.)	
	2 Molecular I uminescence: Fluerimetry, Phospherimetry and Peman	4 1
	2. Molecular Lummescence. Fluorimetry, I nosphorimetry and Kaman Spectroscopy	4 nr
	2.1. Introduction	
	2.2. Fluorimetry : Theory and basic principle: Ouenching:	
	Spectrofluorimeters and applications	
	2.3. Phosphorimetry: Theory and basic principle; phosphorimeters and	
	application	
	2.4. Raman Spectroscopy: Theory and Structural analysis using Raman	
	Spectra	
	(Chapter 6: Instrumental Methods of Chemical Analysis, G.W.	
	Ewing,5 th Ed)	
	3. Atomic Spectroscopy	6 hr
	3.1. Principles of emission	
	3.2. Atomic Emission spectroscopy (AES)	
	3.3. Flame Emission spectroscopy (FES)	

	 3.4. Atomic absorption Spectroscopy (AAS) 3.5. X-Ray Fluorescence Spectroscopy (XRF) (Introduction, principles and applications of above techniques shall be discussed; Chapter 13: Analytical Chemistry Principles, J.H. Kennedy, 2nded) 	
	 4.Spectrometric Identification of Organic compounds 4.1 Ultraviolet and visible Spectroscopy : Brief Revision of UV/VIS Spectroscopy ;Instrumentation and Sampling ; Applications of Electronic S pectroscopy:Conjugated Dienes, Trienes, polyenes, a, ßunsaturated carbony l compounds, aromatic hydrocarbons (Assignment based on BSc. Syllabus for calculating λmax) (Kemp – Chap4) 4.2 Infrared Spectroscopy: Introduction to IR spectroscopy; Basic IR spectra interpretation; Frequencies of functional group. (Kemp – Chap2). 4.3 Proton and Carbon NMR Spectroscopy: Theory of NMR ; Chemical shift; factors influencing chemical shift ; Solvents used in NMR; Theory of spin-spin splitting and simple spin systems;Coupling constant calculation; Factors influencing coupling constant (Assignment based on BSc. Syllabus) (Kemp - Chapter 3) 4.4 Mass Spectrometry : Basic PrinciplesandInstrumentation: Problem solving in structure elucidation based on MS (Kemp - Chapter 5) 4.5 Conjoint Spectrometry Problems: Structural elucidation of organic molecules using UV, IR, NMR (¹H, ¹³C), MS, (Silverstein) 	14 hr
	(Note: Assignment based on BSc. syllabus for all above spectrometric structure should be given to student. <i>More weightage of lectures shall be</i>	
	given for solving IK and NMR data for structur elucidation)	
Pedagogy:	Mainly lectures and tutorials. Seminars / term papers /assignments /	
	presentations / self-study or a combination of some of these can also be	
	used. Sessions shall be interactive in nature to enable peer group learning.	
Text Books	1. G. D. Christian; <i>Analytical Chemistry</i> , John Wiley; 6 th Edition.	
References /	2. J.H. Kennedy, <i>Analytical Chemistry: Principles</i> , Saunders College	
Readings	Publishing, 2 nd Edition.	
	3. G. W. Ewing, Instrumental Methods of Chemical Analysis, McGraw-	
	Hill Int 5 Ed. 4 W. Kampi Organia Spectroscomy Deleroyer 2 Ed.	
	4. W. Kemp; Organic Spectroscopy; Palgrave; 5 Ed.	
	5. D.A. Skoog, D.M. West, F.J. Hollar, S.R. Crouch; Fundamentals of	
	Analytical Chemistry, Cengage learning, 9 Ed.	
	0. J. Mendhalli, K.C. Denney, J.D. Barnes and M. Thollas, Vogel's Textbook of Quantitative Inorganic Analysis: 6 th Edition Dearson	
	Education Asia 2005	
	 H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, <i>Instrumental methods</i> of <i>Analysis</i>: HCBS Publishing New Delhi: 2004 7th Ed 	
	 8. C.N. Banwell and E.M. McCash, <i>Fundamentals of Molecular</i> 9. The second second	
	Spectroscopy, 1 ata McGraw-Hill, New Delni; 4 Ed.	
	9. K. M. Shverstelli, F.A. webster, Spectrometric identification of Organic Compounds: Wiloy India: 6 th Ed	
	10 H Gunzler & A Williams: Handbook of Analytical Techniques	
	WILEY-VCH Verlag GmbH· 2001 1 st Ed	
	11. P.S. Kalsi: Spectroscopy of Organic Compounds: New Age Internationa	
	1: 2 Ed.	
	12. R.T. Morrison, R.N. Boyd; Organic Chemistry, Prentice Hall India 4 th	
	Edition	
	13. E. Pretsch, P. Buhlmann, C. Affolter; <i>Structural Determination of Organic Compounds</i> , Springer; 2005; 2 nd Ed.	

Programme: M. Sc. Part-I (Chemistry) Course Code: ACC-402 Title of the Course: Laboratory Course in Analytical Chemistry Number of Credits: 02 Effective from AY: 2018-19

D	
Prerequisites for the course:	Should have studied practical chemistry courses at F.Y B.Sc, S.Y. B.Sc & T Y B Sc levels so as to have basic knowledge of quantitative analysis.
Course	Introduction of various experimental techniques for analysis
Objectives:	Learning data analysis, handling and interpretation of spectra
Course	Students should be in a position to use standardized material to determine
Outcomes:	an unknown concentration
	To gain experience with some statistics to analyse data in laboratory Students should be in position to use different techniques for qualitative and quantitative estimation
Content:	This course consists of 6 units of experiments in various areas of Analytical chemistry. Minimum 12 experiments shall be carried out and at least 02 experiment from each unit shall be conducted.
	UNIT 1: STATISTICS
	1.Calibration of apparatus (balance, volumetric flasks, pipettes and burettes) and preparation of standard solutions and standardisation
	UNIT 2: COLORIMETRY AND UV- VISIBLE SPECTROPHOTOMETRY
	2.Estimation of Iron from Pharmaceutical sample (capsule) by thiocyanate method
	 3. Estimation of lead/nitrate in water sample 4. Estimation of KNO₃ by UV spectroscopy and K₂Cr₂O₇ by Visible spectroscopy
	 5. Simultaneous determination and Verification of law of additivity of absorbances (K₂Cr₂O₇ and KMnO4) 6.Estimation of phosphoric acid in cola drinks by molybdenum blue
	method
	UNIT 3: FLAME SPECTROPHOTOMETRY 7.Estimation of Na
	8.Estimation of K or Ca
	UNIT 4: VOLUMETRY
	9. Estimation of Ca in pharmaceutical tablet.
	10.Estimation of Al and/or Mg in antacid tablet
	UNIT 5: ION EXCHANGE CHROMATOGRAPHY &SOLVENT EXTRACT
	ION
	11.Separation and Estimation of Zn and Cd
	12.Separation and Estimation of chloride and bromide
	13.Extraction of Cu as copper dithiocarbamate (DTC) using solvent extraction and estimation by spectrophotometry

	UNIT 6: INTERPRETATION EXERCIES 14. Thermal studies: TGDTA and Isothermal weight loss studies of various hydrated solids like $CuSO_4 \cdot 5H_2O$, $Ca_2C_2O_4 \cdot H_2O$, $Fe_2C_2O_4 \cdot 2H_2O$ 15. X-ray powder diffractometry: Calculation of lattice parameters from X-ray powder pattern of cubic system such as NiMn ₂ O ₄ , CoFe ₂ O ₄ etc.	
Pedagogy:	Prelab exercises / assignments / presentations / lab hand-out or a combination of some of these. Sessions shall be interactive in nature to enable peer group learning.	
Text Books/ References / Readings	 J. H. Kennedy, Analytical Chemistry Principles, Saunders College Publishing, Second Edition 1990. G. D. Christian, Analytical chemistry, 5th Ed, John Willey and Sons, 1994 J. Mendham, R.C. Denney, J.D. Barnes and M. Thomas; Vogel's Textbook of Quantitative Inorganic Analysis; 6th Edition, Pearson Education Asia 2005 A. J. Elias, Collection of interesting chemistry experiments, University press, 2002. 	
	 5. R.A. Day & A.L. Underwood, <i>Quantitative Analysis</i>, 6th Edition, Prentice Hall, 2001. 6. J. Kenkel, <i>Analytical Chemistry for Technicians</i>, 3rd Edition, Lewis publishers, 2002. 	

Programme: M. Sc. Part-I (Chemistry)

Course Code: ACO-401	Title of the Course: Analytical Techniques
Number of Credits: 03	Effective from AY: 2018-19

Prerequisites for the course:	Should have knowledge of basic analytical techniques such as chromatography, electro-analytical techniques and data handling.	
Course Objectives:	 Introduction of various statistical approach used in analytical data handling Introduction of different analytical techniques used for qualitative, quantitative estimation 	
Course Outcomes:	 3. Students should be in a position to understand principle behind different analytical techniques 4. With the knowledge basic techniques used for qualitative and quantitative estimation students should be in a position to choose for appropriate technique for particular analysis 5. Students should be in a position to select the separation techniques for purification of analytes. 	
Content:	Section A	
	 1 Analytical Objectives, Data Handling and Good Laboratory Practice (GLP) Scope of analytical science and its literature, qualitative and quantitative analysis, ways to express accuracy and precision, types of errors and their causes; significant figures, control charts, confidence limit, test of significance, rejection of a result- the Q-test. Introduction to significant analytical procedure such as GLP- standard operating procedures, quality assurance, quality control and analytical method validation. 2 Sampling and Calibration Methods Sampling and sample preparation, general steps in chemical analysis, calibration of glass wares. Finding the best straight line-least square regression, correlation coefficient; Calibration curves, standard addition technique and internal standards. Chemical concentrations. 3 Electroanalytical techniques Introduction to electroanalytical techniques, electrochemical cells, electrode potentials, voltametry and polarography, cyclic voltametry, coulometry, controlled potential coulomety and coulometric titrations, Stripping voltammetry, ion-selective electrodes and sensors; Evaluation and Calculation; Application to Inorganic and Organic Trace analysis 	7 hr 5 hr 6 hr
	Section B 1. Extraction Techniques <i>Liquid-liquid extraction/solvent extraction:</i> partition coefficient, distribution ratio and percent extraction; choice of solvents; Solvent extraction of metal ions-ion association complexes and metal chelates; multiple batch extraction, Craig's counter-current distribution; Introduction to green analytical extraction methods:Supercritical Fluid Extraction (SFE); Pressurized Liquid Extraction (PLE); Ultrasound Assisted Extraction (UAE); Microwave Assisted Extraction (MAE):	4 hr

	Enzyme Assisted Extraction (EAE); Solid Phase Microextraction	
	(SPME); Solid Phase Extraction (SPE)	
	2. Basic Principles in Chromatographic Methods	4 hr
	Principles of chromatography, classification of chromatographic	
	techniques based on mechanism of retention, configuration, mobile and	
	stationary phase. Efficiency of separation- plate theory (theoretical plate	
	concept) and rate theory (Van Deemter equation). Principles and	
	applications of Paper chromatography, thin layer chromatography,	
	current chromatography for isolation of natural products	
	current emonatography for isolation of natural products.	6 hr
	3. Gas and Liquid Chromatography	0 111
	Introduction; Instrumental Modules; The Separation System; Choice of	
	Conditions of Analysis; Sample Inlet Systems; Detectors; Practical	
	Considerations in Qualitative and Quantitative Analysis; Coupled	
	Systems-introduction to GCMS, LCMS; Applicability-interpretation	
	and numerical problems; Recent and Future Developments	4 hr
	4 Radioanalytical techniques	
	Theory and principles of radio analytical technique.	
	detection of nuclear radiation, radiation detectors, pulse height	
	analysis, counting error, analytical application of radioisotopes,	
	neutron activation analysis and isotope dilution analysis.	
D 1	Mainta 1 atoms 9 totain 1. Consistent (torus news (a single of the	
Pedagogy:	Mainly lectures & tutorials. Seminars / term papers /assignments /	
	used to some extent. Sessions shall be interactive in nature to enable	
	peer group learning.	
References/	1. G.D. Christian, <i>Analytical Chemistry</i> , John Wiley New York (2004)	
Readings	6 ^{ee} Edition	
	2. D.A. Skoog, D. M. West and F. J. Holler, <i>Fundamentals of</i>	
	3 F I Holler D A Skoog S R Crouch Principles of	
	Instrumental Analysis. Thomson Books/Cole. 6 th Ed.	
	4. J. Mendham, R.C. Denney, J.D. Barnes and M. Thomas, <i>Vogel's Text</i>	
	Book of Quantitative Inorganic Analysis, Pearson Education Asia 2000,	
	6 th Ed.	
	6. H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, <i>Instrumental</i>	
	Methods of Analysis, CBS Publishing New Delni, / Ed.	
	Publishing 2 nd Ed.	
	8. G.W. Ewing, Instrumental Methods of Chemical Analysis, McGraw-	
	Hill (Singapore), 5 th Ed.	
	9. L.G.Hargis, Analytical Chemistry: Principles and Techniques, Durative Hell New Jerry (1999)	
	Prentice Hall, New Jersey (1988)	
	Hall, 2001., 6 th Ed.	
	11. T. Rocha-Santos, A.C. Duarte, <i>Comprehensive Analytical</i>	
	Chemistry, Elsevier, 2014, 1 st Ed.	

Programme: M. Sc. Part-I (Chemistry)Course Code: ICC-401Title of the Course: General Inorganic ChemistryNumber of Credits: 03Effective from AY: 2018-19

Prerequisites for the course:	Students should have studied the courses in Chemistry at F.Y. B.Sc., S.Y.B.Sc. and T.Y.B.Sc. levels so as to have basic knowledge of Inorganic Chemistry and basic principles.	No. of lectures
Course Objectives:	 To introduce atomic / molecular structure and symmetry. To provide fundamental knowledge of solid state chemistry. To introduce basic aspects of coordination / organometallic / bioinorganic chemistry. To provide the concepts of acids and bases. 	
Course Outcomes:	 Students should be in a position to understand atomic and molecular structure and the importance of symmetry. Students should be able to understand molecular shapes. Students should be in a position to understand concepts in i) solid state chemistry, ii) coordination chemistry, iii) organometallic chemistry, iv) bioinorganic chemistry. 	
Content:	 Atomic structure, molecular structure and bonding 1.1 Atomic Structure: Structures of hydrogenic atoms: some principles of quantum mechanics. Many electron atoms: penetration & shielding, building up principle, classification of elements. spectroscopic terms. Atomic/ionic radii, ionization energy, electron affinity, electrononegativity, polarizability. 1.2 Molecular Structure & bonding: Lewis structures, VSPER model, the basic shapes. Valence bond theory: the hydrogen molecule, homonuclear diatomic & polyatomic molecules; hybridisation. molecular orbital theory: approximation, boding & antibonding orbitals. Homonuclear diatomic & Heteronuclear diatomic molecules. 	9 hr
	 Molecular Symmetry: Symmetry elements Symmetry operations, equivalent symmetry elements and equivalent atoms, symmetry point groups with examples, point groups of higher symmetry, systematic procedure for symmetry classification of molecules and illustrative examples, Dipole moment, optical activity and point groups. 	4 hr
	 Solid state chemistry Structures of solids: crystal structures, lattices & unit cells, close packing of spheres, holes in closed-packed structures. Structures of metals & alloys: polytypism, nonclosed-packed structures, polymorphism of metals, atomic radii of metals, alloys, substitutional solid solutions, interstitial solid solutions of nonmetals, intermetallic compounds. Ionic solids: Basic characteristic structures of ionic solids, the rationalization of structures, ionic radii, radius ratio, structure maps, the energetics of ionic bonding, lattice energy. 	6 hr

	 4. Coordination Chemistry 4.1 Introduction, representative ligands, nomenclature, 4.2 Constitution & geometry, low coordination numbers, intermediate coordination numbers, higher coordination numbers, polymetallic compounds. 4.3 Isomerism & chirality in square planar & octahedral complexes, ligand chirality. 4.4 Thermodynamics of complex formation: formation constants, chelate & macrocyclic effects, steric effects & electron delocalization. 4.5 Electronic properties of metal complexes: CFT applied to octahedral and tetrahedral complexes, magnetic moments/CFSE. Electronic spectroscopy: basic concepts, interpretation of spectra of d¹ & d² ions (Orgel diagram for octahedral and tetrahedral complexes). 	5 hr
	 5. Organometallic Chemistry 5.1 Introduction to organometallic chemistry, nomenclature, stability and inert gas rules (neutral atom and donor pair electron count methods). 5.2 Ligands CO & phosphines, homoleptic carbonyls/synthesis/ properties/ oxidation-reduction of carbonyls/ basicity/reactions of CO/spectroscopic properties of metal carbonyls. 5.3 Oxidative addition and reductive elimination. 	4 hr
	 6. Basic Bioinorganic Chemistry 6.1 Macronutrients/micronutrients. Role of elements in biology. Metal ion transport role. 6.2 Definition of metallobiomolecules / metalloporphyrins, structure of porphine and heme group, examples of metalloenzymes of copper and zinc. 	3 hr
	 7. Acids and Bases 7.1 Brönsted Acidity, proton transfer equillibria in water, solvent levelling, solvent system definition if acids & bases, characteristics of Brönsted acids, 7.2 Periodic trends in aqua acid strengths, non-aqeuous solvents, Lewis acidity, hard & soft acids and bases, solvents as acids & bases, superacids & superbases. 	5 hr
Pedagogy:	Mainly lectures / tutorials. Seminars / assignments / presentations / self- study or a combination of some of these could also be used to some extent.	

Text Books /	1. P. W. Atkins, T. Overton, J. Rourke, M. Weller & F. Armstrong,
Reference	Shriver & Atkins Inorganic Chemistry, Oxford Publications, 2009,
Books	5^{th} Ed.
	2. J. E. Huheey, E. A. Kieter, R. L. Kieter & O. K. Medhi, Inorganic
	Chemistry: Principles of Structure & Reactivity, Pearson, 2011,
	4 th Ed.
	3. F. A. Cotton, G. Wilkinson & P. L. Gauss, Basic Inorganic
	Chemistry, Wiley, 2008 (reprint), 3 rd Ed.
	4. J. D. Lee, Concise Inorganic Chemistry, Wiley, 2008, 5th Ed.
	5. F. A. Cotton, Chemical applications of group theory, Wiley Eastern,
	New Delhi, 1976, 3 rd Ed.
	6. L. Pauling, The Nature of The Chemical Bond, Cornell University
	Press, 1960, 3 rd Ed.
	7. M.C. Day & J. Selbin, Theoretical Inorganic Chemistry, Van
	Nostrand-Reinhold, New York, 1969,2 nd Ed.
	8. H.V. Keer, Principles of Solid state Chemistry, New age Intl. Ltd,
	New Delhi, 1995.
	9. A.R. West, Solid State Chemistry and Its Applications, John Wiley &
	Sons, Singapore, 1987.
	10. D.K. Chakrabarty, Solid State Chemistry, New Age Publishers,
	1996, 2^{nd} Ed.
	11. F. A. Cotton & G. Wilkinson, Advanced Inorganic Chemistry,
	Wiley Eastern, New Delhi, 1984, 3 rd Ed.

Number of Cre	edits: 02 Effective from AY: 2018-19	
Prerequisites	Students should have studied the courses in chemistry at F.Y. B.Sc.,	No. of
for the	S.Y.B.Sc. and T.Y.BSc. levels so as to have basic knowledge of	lectures
course:	experimental chemistry	
Course	Chudents shall be trained in the grouporation of accordination compounds /	
Course	Students shall be trained in the preparation of coordination compounds /	
Objectives:	double salts, understanding of redox chemistry, determination of metal	
	content and degree of hydration, and determination of the formula of	
	synthesized compounds. Students will be given hands-on experience in	
	using colorimeter / UV-Vis spectrophotometer while performing	
	instrumental analysis.	
Course	1. Students should be in a position to:	
Outcomes:	i) set up and perform inorganic synthesis	
	i) isolate and purify crystalline product.	
	iii) develop skills for compound characterization	
	iv) determine the metal content by titrimetry / gravimetry /colorimetry	
Contont	Synthesis of inorgania compounds (any six)	24 hr
Content.	1 [Ni;(NH)]C1	2 4 III
	1. $[101(10113)6]C1_2$ 2. $[Co(arr)]C1_{arr}U_0$	
	2. $[C_{2}(ML_{1}), MO_{2})]C_{1}^{3}$	
	5. $[CO(NH_3)_3(NO_2)_3]CI_3$	
	4. $K_3[AI(C_2O_4)_3] \cdot 3H_2O_5$	
	5. $K_3[Cr(SCN)_6] \cdot 4H_2O$	
	6. $K_3[Cr(C_2O_4)_3] \cdot 3H_2O$	
	7. $[Cr(OAc)_2]_2 \cdot 2H_2O$	
	8. Potash alum from scrap aluminium	
	9. Zinc iodide (Redox synthesis)	24 hr
	Quantitative estimations/determinations (any six)	
	1. Estimation of Ni in [Ni(NH ₃) ₆]Cl ₂ titrimetry/gravimetry	
	2. Estimation of Co in $[Co(en)_3]Cl_3 \cdot xH_2O$ volumetrically	
	3. Estimation of oxalate in $K_3[Al(C_2O_4)_3] \cdot xH_2O$ or $K_3[Cr(C_2O_4)_3] \cdot xH_2O$	
	4. Estimation of nitrite by redox titration	
	5. Estimation of calcium in calcite ore	
	6. Estimation of copper in gun metal alloy or Devarda's alloy	
	iodometrically	
	7. Estimation of Cr in chrome alum and $K_3[Cr(C_2O_4)_3] \cdot xH_2O$ to	
	determine degree of hydration.	
	8 Colorimetric determination of Cr or Ni	
D 1		
Pedagogy:	Students should be given suitable pre-lab and post-lab assignments and	
	explanation revising the theoretical aspects of laboratory experiments	
	prior to the conduct of each experiment. Each experiment should	
	preferably be done individually by the students.	
Text Books /	1. J. Mendham, R.C. Denney, J.D. Barnes, M.J. K. Thomas, Vogel's Text	
Reference	Book of Quantitative Chemical Analysis, 2002, 6 th Ed.	
Books	2. G. Brauer, Handbook of Preparative Inorganic Chemistry, 1963,	
	Vol. 1 & 2.	
	3. G. Pass & H. Sutcliffe, Practical Inorganic Chemistry, Preparations,	
	Reactions and Instrumental Methods, Chapman & Hall, 1974, 2 nd Ed.	
	4. A. J. Elias, General Chemistry Experiments, University Press, 2008,	
	Revised Ed.	
	5. S. DeMeo, J. Chem. Ed., Vol 80, 2003, Pg. No. 796-798.	
	6. W. L. Jolly, The Synthesis & Characterization of InorganicCompounds,	
	Prentice-Hall, INC, 1970.	

Programme: M. Sc. Part-I (Chemistry) Course Code: ICC-402 Title of the Course: Lab Course in Inorganic Chemistry

Programme: M. Sc. Part-I (Chemistry) Course Code: ICO-401 Title of the Course: Topics in Inorganic Chemistry & Environmental Chemistry Number of Credits: 03 Effective from AY: 2018-19

Prerequisites	Student should have studied the courses in chemistry at F.Y. B.Sc., S.Y.B.Sc.	No. of
for the	and T.Y.BSc. levels and / or CHIC-401 course so as to have basic knowledge	lectures
course:	of Inorganic / environmental chemistry.	
Course Objectives:	 To provide fundamental aspects of transition & inner transition metals & their compounds. To provide knowledge of main group elements of the periodic table & their compounds To introduce various global phenomenon's of atmosphere & environment, follow directive of the Supreme Court in 1993 to introduced environmental education at all levels, have a fair knowledge on the various global activities to justify permissible or adverse, so that future generation are not adversely affected. 	
Course	1. Students should be in position to understand fundamentals / usefulness of	
Outcomes:	transition & inner transition metals.	
	2. Students should be in position to understand chemistry main group	
	3. Students shall be aware of the maintenance of healthy living atmosphere	
	on the globe.	
Content:		
	SECTION-I	
	 Chemistry of transition & inner transition elements Transition elements: IUPAC definition of transition elements, occurrence, physical & chemical properties, noble character, metal oxides & oxido complexes, examples of metal-metal bonded clusters. Inner transition elements: Lanthanides, occurrence, properties, oxidation states, electronic structure, colour and spectra, magnetic properties, lanthanide contraction, compounds of lanthanides. Actinoid chemistry, general trends. Main group elements and their compounds 	9 hr 9 hr
	 2.1 Boron group: Compounds of boron:- borazine and boron nitride, synthesis, properties, structure & bonding. Borates: classification, structures & examples. 	
	2.2 Carbon group: Allotropes of carbon including C_{60} , intercalation compounds of graphite, carbides. Compounds of silicon: silicates, zeolites & silicones.	
	2.3 Nitrogen group:- Introduction: oxides & oxyacids of nitrogen. 2.4 Oxygen group: oxyacids & oxohalides of S, S ₄ N ₄ ring compounds: synthesis, properties, structure & bonding.	

	SECTION-II	
	1. Atmosphere Structure and properties of the atmosphere, composition of atmosphere and vertical temperature behaviour, lapse rate and temperature inversion.	2 hr
	2. Air Pollution Classification of air pollutants and photochemical reactions in the atmosphere Common air pollutants (e.g. CO, NOx, SO ₂ , hydrocarbons and particulates) (a) sources (b) physiological and environmental effect (c) monitoring , d) various remedial & technological measures to curb pollution. Air quality standards.	7 hr
	3. Water pollution Importance of buffer & buffer index in waste water treatments. C hemical, physical & biological characteristics of water pollution, specific & non-specific characterization of water. DO, BOD, COD, and chlorine demand, typical water treatment & waste water treatment (Municipal).	5 hr
	4. Treatment of Industrial wastes Electroplating industry, fertilizer industry and pharmaceuticals industries.	2 hr
	5. Biogeochemical cycles: Carbon and Nitrogen cycles nature	2 hr
Pedagogy:	Mainly lectures / tutorials. Seminars / assignments / presentations / self-study or a combination of some of these could also be used to some extent.	
Text books / reference books	 P.W. Atkins, T. Overton, J. Rourke, M. Weller, & F. Armstrong, Shriver & Atkins Inorganic Chemistry, Oxford publications, 2009, 5th Ed. J. E. Huheey, E. A. Kieter, R. L. Kieter & O. K. Medhi, Inorganic Chemistry: Principles of Structure & Reactivity, Pearson, 2011, 4th Ed. F. A. Cotton, G. Wilkinson & P. L. Gauss, Basic Inorganic Chemistry, Wiley, 2008 (reprint), 3rd Ed. N.N. Greenwood and A. Earnshaw, Chemistry of the Elements, Pergamon Press, Exetr, Great Britain. 1984. J.D. Lee, Concise Inorganic Chemistry: Pollution and Remedial Perspective, Narosa Publication, 2017. A.K. De, Environmental Chemistry, New Age, 2006. A.C. Stern, R.W. Boubel, Fundamentals of Air Pollution, D. Bruce turner & D.L.Fox, Academic Press, 1984. R.A. Horne, Chemistry of Our Environment", John Wiley, N.Y. (1978). C.N. Sawyer & P.J. Macarty, Chemistry for Environmental Engineering, Mc Graw Hill, 1978. L.L. Ciaccio, Water and Water Pollution Hand Book", Marcel Dekker, 1973. J.C. Lamb, Water Quality and its Control, John Wiley & Sons, N.Y., 1985. 	

Programme: M. Sc. Part-I (Chemistry) Course Code: OCC-401 Title of the Course: Structure, reactivity, stereochemistry and reaction mechanism Number of Credits: 03 Effective from AY: 2018-19

Prerequisites	Should have studied the courses / topics in Organic Chemistry at F Y B Sc,	
£ 41	S Y B Sc and T Y B Sc levels so as to have basic knowledge of organic	
for the course:	nomenclature and basic principles.	
Course	3 Introduction of various concepts based on molecular orbital theory	
Objectives:	4. Introduction of topicity, prostereoisomerism and chemo-, regio- and	
0	stereoselectivity in organic reactions.	
	5. Learning mechanistic aspects of various type of reactions in organic	
	synthesis.	
Course	5. Students should be in a position to evaluate effect of delocalization of	
Outcomes:	electrons & presence or absence of aromaticity in organic compounds.	
	6. Students should be in a position to apply various concepts in	
	7 Students shall be in a position to understand/propose plausible	
	mechanism of organic reactions	
Content:	1. Molecular orbitals and delocalized chemical bonding:	06 hr
	Qualitative description of Molecular orbitals of simple acyclic and	00 m
	monocyclic Systems, Frontier molecular orbitals, Conjugation, cross	
	conjugation, resonance, hyperconjugation and tautomerism (types	
	and examples), Aromaticity: Origin of Huckel's rule, examples of	
	aromatic, non-aromatic and antiaromatic compounds; concept of	0.41
	Mobius aromaticity.	06 hr
	2. Structure & Reactivity:	
	strengths: HSAB concept & Eactors affecting it Effect of structure	
	& medium on acid and base strength. Concept of superacids and	
	superbases, Electrophilicity & Nucleophilicity, Examples of ambident	
	nucleophiles & electrophiles. (Including revision of aromatic	08 hr
	electrophilic and nucleophilic substitution)	
	3. Stereochemistry:	
	Brief revision of configurational nomenclature: R & S; D & L; E & Z;	
	cis & trans and syn & anti nomenclature. Chirality in molecules with	
	two and more chiral centres. Conformational analysis of open chain	
	and three nomenclature. Tonicity and Prostereoisomerism: Tonicity of	
	ligands and faces-homotopic enantiotopic and Cram's rule /	
	diastereotopic ligands and faces.	
	Introduction to chemoselective, regioselective and stereoselective	
	reactions.	
	Stereochemistry of cis- and trans-decalins, conformation and reacti-	
	vity of cyclohexane and substituted cyclohexanes, cyclohexene /	06
	cyclohexanone.	hr
	4. Reaction Mechanism:	
	Brief revision of carbocations, carbanions, free radicals, carbenes and	
	nitrenes with reference to generation, structure, stability and reactivity;	
	Types of mechanisms, types of reactions, thermodynamic and	
	kinetic control. The Hammond postulate and principle of microscopic	
	reversibility, Methods of determining reaction mechanisms like-	
	1) Identification of products,	

	2) Determination of the presence of intermediates (isolation, detection,	
	trapping and addition of suspected intermediate,	
	3) Isotopic labelling,	
	4) Stereochemical evidence,	
	5) Kinetic evidence and	06
	6) Isotope effect (at least two reactions to exemplify each method be	06
	studied)	nr
	5 Aliphatic Nucleonbilic substitution:	
	Brief revision of nucleophilic substitutions with respect to Mechanism	
	Various factors affecting such reactions:	
	The Neighbouring Group Participation (NGP)/ Anchimeric assistance:	
	General approach to various NGP processes; NGP by unshared/lone	
	pair of electrons; NGP by π -electrons; NGP by aromatic rings	
	(formation of phenonium ion intermediate); NGP by sigma bonds with	
	special reference to bornyl and nor-bornyl system (formation of non-	04 hr
	classical carbocation)	
	6 Elimination reactions:	
	The E2. E1 and E1cB mechanisms. Orientation of the double bond.	
	Savtzeff and Hofmann rule. Effects of changes in the substrate, base,	
	leaving group and medium on 1) overall reactivity, 2) E1 vs. E2 vs.	
	E1cB and 3) elimination vs substitution, Mechanism and orientation in	
	pyrolytic syn elimination (various examples involving cyclic and	
	acyclic substrates to be studied).	
Pedagogy:	Mainly Lectures & tutorials. Seminars / assignments / presentations / self-	
	study or a combination of some of these could also be used to some extent.	
References/	1. D. Nassipuri, Stereochemistry of Organic compounds - Principles and	
	Application, Wiley Eastern Limited, 2013, 4 th Ed. Kent, [England]:	
Readings	New Academic Science Limited, 2013.	
	2. E.L. Eliel, <i>Stereochemistry of carbon compounds</i> , Tata MacGraw Hill	
	Publishing Company Ltd. (1990)	
	3. J. March. Advanced Organic Chemistry: Reaction. Mechanism and	
	Structure Wiley 2010 4 th Ed	
	4 I Clavden N Greeves S Warren & Wothers Organic Chemistry	
	Oxford University Press 2012 2 nd Ed	
	5 II Finar Stereochemistry and Chemistry of Natural products FLBS	
	Longmans 1963 Vol 2 3 rd Ed	
	6 V M Potapov Stereochemistry MIR Publishers Moscow 1979	
	7 E S Gould <i>et al.</i> Mechanism and structure in Organic Chemistry	
	1965	
	$8 = A$ Corov Organia Chamistry 2000 4^{th} Ed	
	6. F. A. Carcy, Organic Chemistry, 2000, 4 Ed.	
	9. S.H. Pine, <i>Organic Chemistry</i> , McGraw-Hill International Edn. 2010, 5 th Ed.	
	10. F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry, Vol. I &	
	II. Plenum Press, 1977	
	11. J. M. Harris & C.C. Wamser, Fundamentals of Organic Reaction	
	Mechanisms, John Wiley & Sons. Inc. 1976	
	12. F.M. Menger, D.J. Goldsmith & L. Mendell, Organic Chemistry. A	
	concise approach 1075 2 nd Ed	

Programme: M. Sc. Part-I (Chemistry) Course Code: OCC-402 Title of the Course: Laboratory course in Organic Chemistry Number of Credits: 02 Effective from AY: 2018-19

Prerequisites	Students should have exposure to common laboratory practices and techniques	
for the	studied at F Y B Sc, S Y B Sc and T Y B Sc chemistry theory / practical	
course:	courses.	
Course	To translate certain theoretical concepts learnt earlier into experimental	
Objectives:	knowledge by providing hands on experience of basic laboratory techniques	
	required for organic syntheses.	
Course Outcomes:	 Students shall gain the understanding of: Stoichiometric requirements during organic syntheses. Safe and good laboratory practices, handling laboratory glassware, equipment and chemical reagents. Common laboratory techniques including reflux, distillation, steam distillation, vacuum distillation, aqueous extraction, thin layer chromatography (TLC) 	
Content:	1. Introduction to laboratory equipments, apparatus and safety:	04
	 a) Use of common laboratory equipments like fume hoods, vacuum pumps, weighing balance etc. to be explained to the students. b) Introduction to various types of quick fit joints and apparatus to the students. c) Discussion of Safety Techniques: i) Disposal of chemicals, ii) Usage of protective equipments, iii) First aid, iv) Fire extinguishers, types of fire, d) Hazards of chemicals 	hr
	d) Hazards of chemicals.	24
	2. Laboratory Techniques:	24 hr
	a. Simple distillation (any one): Toluene-dichloromethane mixture using water	111
	condenser, nitrobenzene and aniline using air condenser.	
	 b) Steam distillation (anyone):Separation of <i>o</i>-and <i>p</i>- nitrophenols, naphthalene from its suspension in water, clove oil from cloves. c) Crystallisation: Concept of induction of crystallization(any one) : i) Crystallisation of phthalic acid from hot water using fluted filter paper and stemless funnel. ii) Acetanilide from boiling water iii) Naphthalene from ethanol . iv) Decolorisation and crystallization of brown sugar (sucrose) with animal charcoal using gravity filtration. d) Sublimation: Simple or vacuum sublimation of camphor, naphthalene, anthracene or succinic acid (any one). e) Vacuum distillation (any one): o-dichlorobenzene, diphenyl ether. Also use of nomograph should be explained. f) Thin layer Chromatography (any one): Separation of <i>o</i> and <i>p</i>-nitroanilines, Separation of analgesic drugs, Separation of <i>o</i> and <i>p</i>-nitrophenols, 	

	3. Organic synthesis (any four experiments):	16
	a)	hr
	Aliphatic electrophilic substitution: Preparation of iodoform from ethanol & acetone	
	b) Aromatic electrophilic substitution (anyone): Preparation of p-bromoacet-	
	anilide, bromination of acetophenone to phenacyl bromide, nitration of	
	napthathalene to 1-nitronaphthalene, nitration of benzaldehyde to 3-	
	nitrobenzaldehdye.	
	c) Oxidation of: i) Benzoic acid from toluene ii) Cyclohexanone from	
	cyclohexanol, iii) isoborneol to camphor using Jones reagent (any one).	
	d) Reduction (any one): Reduction of <i>o</i> -nitroaniline to <i>o</i> -phenylenediamine	
	using Sn/HCl; Reduction of <i>p</i> -nitro benzaldehyde to <i>p</i> -nitrobenzyl alcohol	
	using NaBH ₄	
	e) Bromination of an alcohol using CBr ₄ / triphenylphosphine.	
	f) Grignard reaction: Triphenylmethanol from benzoic acid ester or	
	benzophenone. g)	
	Aldol condensation: Dibenzal acetone from benzaldehyde	
	h) Acetoacetic ester condensation : Preparation of ethyl n -	
	i) Cannizzaro reaction using 4 chlorobenzaldebyde as substrate	
	i) Friedel Craft's reaction (any one): using toluene and succinic anhydride	
	resorcinol to resacetophenone, benzene and maleic anhydride to	
	β -benzoylacrylic acid	
	k) Solvent free preparation of coumarin by the Knoevenage	
	condensation	
	under MW irradiation.	
	1) Preparation of oxidizing agent (any one): Pyridinium chlorochromate-silica,	
	pyridinium chlorochromate-alumina, MnO ₂ .	
	m) Preparation of cuprous chloride.	
	3 Isolation from natural sources : (any one)	4hr
	Caffeine from tea powder, piperine from pepper, cinnamaldehyde from	1111
	cinnamon	
Pedagogy:	Students should be given suitable pre- and post-lab assignments and	
	explanation revising the theoretical aspects of laboratory experiments prior to	
	the conduct of each experiment. Each of the experiments should be done	
	individually by the students.	
References /	1 A I Vogel A R Tatchell B S Furniss A I Hannaford	
Readings	<i>Vogel's Textbook of Practical Organic Chemistry</i> . 5 th Ed., Prentice Hall:	
	2011.	
	2. D. Pasto, C. Johnson and M. Miller, Experiments and Techniques in	
	OrganicChemistry, 1 st Ed., Prentice Hall, 1991.	
	3. L.F. Fieser, K.L. Williamson "Organic Experiments" 7th edition D. C.	
	Heath, 1992.	
	4. K.L. Williamson, K.M. Masters, Macroscale and Microscale Organic	

Experiments, 6th Edition, Cengage Learning, 2010	
5. R.K. Bansal, Laboratory Manual in Organic Chemistry, New Age	
International, 5 th Edition, 2016.	
6. S. Delvin, Green Chemistry, Sarup & Sons, 2005.	
7. O.R. Rodig, C.E. Bell Jr. and A.K. Clark, Organic Chemistry Laboratory	
Standard and Microscale Experiments, Saunders College Publishing, 3rd	
edition, 2009.	
8. J. Mohan, Organic Analytical Chemistry, Narosa Publishing House, 2014.	

Programme: M. Sc. Part-I (Chemistry) Course Code: OCO-401 Title of the Course: Synthetic Organic Chemistry I Number of Credits: 03

Prerequisites	Should have studied the courses / topics in Organic Chemistry at F Y B Sc,	
for the course:	S Y B Sc and T Y B Sc levels as well as the course CHOC-401 so as to	
	have basic knowledge of organic nomenclature and basic principles.	
Course	1. Introduction to concepts of functional groups and their interconversion	
Objectives:	2. Learning mechanistic concepts of carbon-carbon bond making by	
	nucleophilic addition to carbonyl group	
	3. Learning mechanistic aspects of various oxidation & reductionprocesses	
	used in organic syntheses.	
Course	1. Students should be in a position to choose appropriate oxidizing agent	
Outcomes:	for oxidation of a particular functional group.	
	2. Students should be in a position to choose appropriate reducing agent for	
	reduction of a particular functional group.	
	3. Students shall be in a position to understand/propose plausible	
	mechanism of organic reactions.	
	4. Student should be able to choose appropriate nucleophilic addition	
	reaction for making carbon-carbon bond.	
Content:	1. Oxidation reactions:	11
	Oxidation of organic compounds using chromium (PCC, PDC) and	hrs
	manganese compounds, Oppenauer oxidation, Swern oxidation,	
	ozonolysis. Other methods of oxidation such as selenium dioxide,	
	Pb(OAc) ₄ , HIO ₄ , peracids, peroxides, OsO ₄ ,RuO ₄ , DMSO (Swern) sodium	
	bromated / CAN & NaOCI, DDQ, Prevost's reagent and Woodward	
	Conditions;	
	Catalytic oxidation over Pt, Photosensitised oxidation of alkenes, oxidation	
	with molecular oxygen, aromatization, silver based reagents.	
	2.Reduction reactions:	9 hrs
	Reduction of organic compounds using hydride-transfer reagents and	
	related reactions : MPV reduction, NaBH ₄ , Trialkylborohydrides, LAH	
	& lithium hydridoalkoxyaluminates, mixed LAH-AlCl ₃ reagents,	
	DIBAL and reduction with borane and dialkylboranes, Enzymatic	
	reduction involving liver alcohol dehydrogenase/NADH & Bakers' yeast,	
	catalytic hydrogenation, Dissolving metal reductions including acyloin	
	condensation, Clemmensen reduction and Birch reduction, Other methods	
	of reduction: Wolff-Kishner, Raney Ni desulphurisation, di-imide.	
	3.Halogenation:	5 hrs
	Formation of Carbon Halogen bonds: Substitution in saturated compounds,	
	alcohols, carbonyl compounds, substitution at allylic and benzylic	
	compounds, bromodecarboxylation (Hunsdiecker reaction), Finkelstein	
	reaction, iodolactonisation.	

	 4. Esterifiction, amide preparation and hydrolysis: (study of different mechanisms and reagents) 5. Name reactions: Knoevenegel Reaction, Claisen, Darzen, Stobbe, Perkin, Aldol, Benzoin, Pechmann condensation. 	6 hrs 5 hrs
Pedagogy:	Mainly Lectures & tutorials. Seminars / assignments / presentations / self-	
	study or a combination of some of these could also be used to some extent.	
References/	1. H. O. House, <i>Modern Synthetic Reactions</i> , 2 nd Ed., W. A. Benjamin,	
Readings	Benjamin-Cummings Publishing Co., 1972.	
	2. W. Caruthers, <i>Modern Methods of Organic Synthesis</i> , 4 th Ed.,Cambridge	
	University Press, 2004.	
	3. M. B. Smith, Jerry March, Advanced Organic Chemistry- Reaction,	
	Mechanism and Structure, 6 Ed, Wiley, 2006.	
	4. F.A. Carey & R.J. Sundberg, <i>Advanced Organic Chemistry</i> (Part A & B) 5 th Ed., Springer India Private Limited, 2007.	
	5. P Sykes, A guidebook to mechanisms in organic chemistry, 6 th Ed., Pearson Edu., 1996.	
	 Clayden, Greeves, Warren and Wothers, Organic Chemistry, 2ndEd., Oxford University Press, 2002. 	
	7. E.S. Gould, <i>Mechanism and structure in Organic Chemistry</i> , Holt, Reinhart and Winston 1965.	
	8. F. A. Carey, R. M. Giuliano, <i>Organic Chemistry</i> , 8 th Ed., McGraw-Hill, 2010.	
	9. S.H. Pine, <i>Organic Chemistry</i> , 5th Ed, McGraw-Hill International Edn. McGraw-Hill, 1980.	

Programme: M. Sc. Part-I (Chemistry) Course Code: PCC-401 Number of Credits: 03

Title of the Course: General Physical Chemistry Effective from AY: 2018-19

Prerequisites	Should have studied the courses in chemistry at F.Y B.Sc, S.Y B.Sc & T.Y	
for the	B.Sc levels so as to have basic knowledge of Physical Chemistry and basic	
course:	principles.	
Course	6. Introduction of various concepts on thermodynamics.	
Objectives:	7. Introduction of electro chemistry and kinetics.	
	8. Learning quantum chemistry.	
Course	8. Students should be in a position to understand various concepts in	
Outcomes:	physical chemistry.	
	9. Students should be in a position to apply these concepts during the lab	
	course in physical chemistry.	
	auestions based on these topics	
Content	1 Thermodynamics	10 hrs
Contents	1.1 Thermodynamic properties: Gas laws Real gasses Boyle temperature	10 110
	Critical temperature State and nath properties. Intensive and extensive	
	properties. Exact and inexact differentials. Internal energy enthalpy	
	ontropy free energy and their relations and significances. Maxwell	
	relations. Thermodynamic equations of state	
	1.2 Joule Thomson officiat Joule Thomson coefficient for you der Weele'	
	1.2 Joure-Thomson effect, and andustion of law termaneture	
	gas. Joure-momson effect and production of low temperature,	
	adiabatic demagnetization, Joule-Thompson coefficient, inversion	
	temperature.	
	1.3 The third law of thermodynamics. Need for the third law. Apparent	
	exceptions to third law. Application of third law. Use of	
	thermodynamic functions in predicting direction of chemical change.	
	Entropy and third law of thermodynamics.	
	1.4 Phase equilibria: Phase rule, Discussion of two component systems	
	forming solid solutions with and without maximum or minimum in	
	freezing point curve. Systems with partially miscible solid phases.	
	1.5 Three component systems: Graphical representation. Three	
	component liquid systems with one pair of partially miscible liquids.	
	Influence of temperature. Systems with two pairs and three pairs of	
	partially miscible liquids. The role of added salts.	
	2.Electrochemistry	06 hrs
	2.1 EMF series, decomposition potential and overvoltage,	
	electronegativity, basic principles, completeness of deposition,	
	Separation with controlled potentials, constant current electrolysis,	
	composition of electrolyte, potential buffers, physical characteristics of	
	metal deposits.	
	2.2 Electroplating and electroless plating, electrosynthesis.	
	2.3 Concepts of acid-base aqueous and non-aqueous solvents, hard and soft	
	acid-base concept and applications.	

	3. Chemical Kinetics	
	3.1 General introduction to various types of order of reaction including	07 hrs
	fractional order, Molecularity of the reaction.	
	3.2 Introduction to reversible and irreversible reactions and reactions	
	leading to equilibrium. Van'tHoffs equation and analysis of Gibbs free	
	energy of equilibrium reactions.	
	3.3 Collision Theory and Maxwell Boltzmann distribution of energies of	
	colliding molecules(derivationnotrequired). The concept of collisional	
	cross section and reactive cross section and its significance.	
	3.4 Comparative study of transition state and collision state theory	
	(derivation not required).	
	3.5 Free radical reactions, Complex reactions such as acetaldehyde	
	decomposition and reaction between H_2 and Br_2 , Homogeneous	
	reactions and acid-base catalysis.	
	3.6 Elementary enzyme reactions.	
	4. Quantum Chemistry	13 hrs
	4.1 Operators, Functions, Eigen value equations, Postulates.	
	4.2 Schrodinger equation, application to simple system viz. free particle,	
	particle in one dimensional, two dimensional and three dimensional	
	box (quantization, separation of variables, degenerate wave functions).	
	4.3 Hydrogen like atoms, Schrodinger equation and its solutions, atomic	
	orbital wave functions and interpretation.	
	4.4 Hückel MO theory, Secular equations, Secular determinant,	
	delocalization energy, charge density, π -bond order, free valence,	
	applications to C_2H_4 , C_3H_5 (radical), C_4H_6 , C_4H_4 , C_6H_6 , C_6H_8	
Pedagogy:	Mainly lectures & tutorials. Seminars / term papers /assignments /	
	presentations / self-study or a combination of some of these may be used.	
	Sessions shall be interactive in nature to enable peer group learning.	
References/	1. P. W. Atkins and J. D. Paula, <i>Physical Chemistry</i> , Eighth Edition, Oxford	
Readings	University Press, (2007) New Delhi.	
	(2016) New Delhi.	
	3. J. E House, <i>Principles of Chemical Kinetics</i> (Second edition) Academic	
	Press,2007 Elsevier Burlington, USA	
	4. I. N. Levine, <i>Quantum Chemistry</i> , Seventh Edition, Prentice-Hall, (1999)	
	New Delhi.	

Programme: M. Sc. Part-I (Chemistry)

Course Code: PCC-402Title of the Course: Laboratory Course in Physical ChemistryNumber of Credits:02Effective from AY: 2018-19

Prerequisites	Should have studied the courses in Chemistry at F Y B Sc, S Y B Sc & T Y B Sc	
for the course:	levels so as to have basic knowledge of Physical Chemistry and basic principles.	
Course	1. Introduction of various concepts on thermodynamics.	
Objectives:	2. Introduction of electro chemistry and kinetics.	
Course	1. Students should be in a position to understand various concepts in physical	
Outcomes:	chemistry by conducting experiments.	
	2. Students should be in a position to apply these concepts during the lab course	
	in physical chemistry.	
Content:	1. To study the kinetics of hydrolysis of ethyl acetate and to determine a) Energy	48
	of activation b) Entropy of activation and c) Free energy change.	hrs
	2. To study the kinetics of the reaction between Potassium per sulphate	
	(K), and Potassium iodide (KI), and to determine a) Energy of	
	activation b) Entropy of activation and c) Free energy change.	
	3. To determine the order of reaction between potassium persulphate and	
	potassium iodide by graphical, fractional change and differential	
	methods	
	4. To determine the degree of hydrolysis of salt of weak base and strong acid	
	using conductometer.	
	5. To determine the composition of a mixture of acetic acid, dichloroacetic acid	
	and hydrochloric acid by condoctometric titration.	
	6. To determine the dissociation constants of a dibasic acid and obtain derivative	
	plot to get equivalence point.	
	7. To determine the dissociation constants of a tribasic acid (Phosphoric acid	
	obtain derivative plot to get equivalence point.	
	8. To determine formal redox potential of Fe^{2+}/Fe^{3+} and Ce^{3+}/Ce^{4+} system obtain	
	derivative plot to get equivalence point.	
	9. To study the three component system such as toluene, ethanol and water.	
	10. To study the three component system such as acetic acid, chloroform; and	
	water and obtain tie line.	
	11. To determine the molecular weight of polyvinyl alcohol by viscosity	
	measurement.	
	12. To determine the molecular weight of polystyrene by viscosity measurement.	
Pedagogy:	Lectures / tutorials / seminars / term papers /assignments / presentations / self-	
	study or a combination of some of these. Sessions shall be interactive in nature to	
	enable peer group learning.	
Keferences/	1. A. FINIAY & J.A. KItchener, "Practical Physical Chemistry", Longman 2 F. Daniels & I.H. Mathews "Experimental Physical Chemistry" Longman	
Readings	3. A.M.James, "Practical Physical Chemistry".	
	4. D.P. Shoemaker & C.W. Garland, "Experimental Physical Chemistry",	
	McGraw-Hill.	

Programme: M. Sc. Part-I (Chemistry)Course Code: PCO-401Title of the Course: Topics in Physical ChemistryNumber of Credits:03Effective from AY: 2018-19

Prerequisites	Should have studied the courses in Physical Chemistry at F Y B Sc, S Y B Sc	
for the course:	and T Y B Sc levels so as to have basic knowledge of Physical Chemistry	
	and basic principles.	
Course	1. Introduction of various mathematical concepts for Chemistry.	
Objectives:	2. Introduction of topics viz. magnetic materials and properties,	
	photochemistry. Nano materials.	
Course	1. Students should be in a position to understand various concepts in physical	
Outcomes:	chemistry.	
	2. Students should be in a position to apply these concepts during the lab	
	course in physical chemistry.	
	3. Students shall be in a position to answer the NET / SET examination	
	questions based on these topics.	
Content:	1.Mathematical Preparations:	18
	1.1 Introduction to various functions and function plotting (exponential,	hrs
	logarithmic, trigonometric etc.), functions of many variables. Complex	
	numbers and complex functions.	
	1.2 Linear equations, vectors, matrices and determinants.	
	location and characterization of critical points of a function	
	Regression methods, curve fitting.	
	1.4 Introduction to series, convergence and divergence, power series,	
	Fourier series, Fourier transformations and Numerical methods	
	2. Magnetic Properties	
	2.1 Types of magnetism (dia, para, ferro, antiferro and ferrimagnetism)	08
	Magnetic susceptibility and its determination.	hrs
	2.2 Magnetization curves and hysteresis, magnetic anisotropy, magnetic	
	exchange interactions, Neel temperature and magnetic transition.	
	2.3 Ceramic magnetic materials, Applications of magnetic Materials	
	3.Photochemistry:	06
	3.1 Absorption and emission of radiation of photochemical interest.	hrs
	Einstein's equation.	
	3.2 Jablonskii's diagram illustrating fluorescence and phosphorescence.	
	3.3 Prompt and Delayed Fluorescence. Factors affecting Fluorescence life	
	time and quantum yield.	
	3.4 Flash photolysis and lasers. Photosensitised reactions and	
	photosynthesis.	
	4 Nanomaterials	04
	A 1 Introduction Chamical synthesis and matheds of structural	hre
	4.1 Introduction, Chemical synthesis and methods of structural	ms
1	characterization.	1

	4.2 Areas of application, Societal health and environmental impact.
Pedagogy:	Mainly lectures & tutorials. Seminars / term papers / assignments / self- study / or a combination of some of these can be used to some extent. Sessions shall be interactive in nature to enable peer group learning.
References/ Readings	 P.L. Alger, Mathematics for Science and Engineering, McGraw-Hill, New York (1963). E. Kreyszic, Advance Engineering Mathematics, Wiley-Eastern, New Delhi (1987). L.N. Muley, Magnetic susceptibility, Interscience Publishers, New York (1963). K.K. Rohatgi-Mukherjee, Fundamentals of Photochemistry, Wiley Eastern Ltd. New Delhi (1988). G.A. Ozinand A.C. Arsenault, Nanochemistry: A chemical approach to Nanomaterials, RSC Publishing, Cambridge, (2005).